Solving Equations

I can solve one-step and two-step missing number equations using inverse operations.

a) $x + 12 = 19$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c) $20 = 4x$ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

2. Complete the balance diagrams to show the following equations and find the value of x.

a) x + 8 = 21	(+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)	b) x - 7 = 15	(+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1)(+1) (+1)(+1)(+1)(+1) (+1)(+1)(+1)(+1)(+1)(+1)(+1)(+1)(+1)(+1)	c) 21 = 3x	(+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)
	x =		x =		x =

Solving Equations

I can solve one-step and two-step missing number equations using inverse operations.

2. Draw your own balancing diagrams to show the following equations and find the value of x.

a) $2x + 8 = 18$	b) 3x + 7 = 37	c) 13 = 4x + 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} (+1)(+1) & (+1)(+1)(+1)(+1) \\ (+1)(+1) & (+1)(+1)(+1)(+1)(+1) \\ (+1)(+1) & (+1)(+1)(+1)(+1)(+1)(+1) \\ (+1)(+1) & (+1)(+1)(+1)(+1)(+1)(+1) \\ (+1)(+1) & (+1)(+1)(+1)(+1)(+1)(+1) \end{array}$	(+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1) (+1)(+1)
x =	x =	x =

Solving Equations

I can solve one-step and two-step missing number equations using inverse operations.

2. Draw your own balancing diagrams to show the following equations and find the value of x.

a) $2x - 9 = 13$	b) 3x - 10 = 5	c) $16 = 2(x - 12)$
+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1	+1 +1 +1 +1 +1 +1	(+1)(+1) (+1)
x =	x =	x =

Solving Equations **Answers**

*		
1.		x + 12 = 19
	α	x = 19 - 12
		x = 7
		x - 3 = 18
	b	x = 18 + 3
		x = 21
		20 = 4x
	С	$20 \div 4 = x$
		S = x
2.		x + 8 = 21
	α	x = 21 - 8
		x = 13
		x - 7 = 15
	b	x = 15 + 7
		x = 22
		21 = 3x
	С	$21 \div 3 = x$
		7 = <i>x</i>

	**			
1.		2x + 10 = 26		
		2x = 26 - 10		
	α	2x = 16		
		$x = 16 \div 2$		
		x = 8		
		3x + 9 = 30		
		3x = 30 - 9		
	b	3x = 21		
		$x=21\div 3$		
		x = 7		
		27 = 4x + 11		
		27 - 11 = 4x		
	С	16 = 4x		
		$16 \div 4 = x$		
		4 = x		

**		
2.		2x + 8 = 18
		2x = 18 - 8
	α	2x = 10
		$x = 10 \div 2$
		x = 5
		3x + 7 = 37
		3x = 37 - 7
	b	3x = 30
		$x = 30 \div 3$
		x = 10
		13 = 4x + 5
		13-5=4x
	С	8 = 4x
		$8 \div 4 = x$
		2 = x

1.		2x - 8 = 10	
		2x = 10 + 8	
	α	2x = 18	
		$x = 18 \div 2$	
		x = 9	
		3x - 6 = 9	
		3x = 9 + 6	
	b	3x = 15	
		$x = 15 \div 3$	
		x = 5	
		22 = 4x - 6	
		22 + 6 = 4x	
	С	28 = 4x	
		$28 \div 4 = x$	
		7 = <i>x</i>	

2.		2x - 9 = 13	
		2x = 13 + 9	
	α	2x = 22	
		$x = 22 \div 2$	
		x = 11	
		3x - 10 = 5	
		3x = 5 + 10	
	b	3x = 15	
		$x = 15 \div 3$	
		x = 5	
		16 = 2(x - 12)	
		$16 \div 2 = x - 12$	
	С	8 = x - 12	
		8 + 12 = x	
		20 = x	

